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1. Introduction 

 

With the development of renewable and sustainable 

energy, a fast-growing market for portable energy storage 

devices, such as batteries, supercapacitors and fuel cells has 

been rapidly increasing [1, 2]. Among current devices, 

supercapacitors, also known as electrochemical capacitors or 

ultracapacitors, have attracted lots of attentions due to their 

long cycle life, high power density, greater stability and good 

reversibility [3, 4]. In general, supercapacitors can be classified 

into two categories based on the specific energy storage 

mechanism: electrical double layer capacitors [5, 6], (EDLCs) 

and pseudo-capacitors [7-9]. Thereinto, EDLCs represent 

today more than 80% of the commercially manufactured 

supercapacitors using carbon as the active material, which 

strongly depend on the accessible specific surface area (SSA) 

and porous structure of the electroactive carbon materials to 

the electrolytes as well as the electronic conductivity 

themselves [10-13].  

Therefore, carbon materials with a high surface area, 

well-developed porosity and good electrical conductivity have 

been extensively considered as superior electrode materials for 

supercapacitors, including quasi-zero-dimensional (0D) onion-

like carbon (OLC), one-dimensional (1D) carbon nanotubes 

(CNTs), two-dimensional (2D) graphene and three-

dimensional (3D) porous carbon monoliths [14-16], etc. 

Among them, porous carbon nanosheets (PCSs), stacked 

assembly or hybrid composite formed from single to many 

layers of two-dimensional carbon materials, have recently 

become a new class of promising electrode material for 

EDLCs [17]. PCSs can show outstanding capacitive 

performance, because they have higher electroactive surface 

area than 0D and 1D material. On the other hand, compared to 

3D material, mesoscopic structure of PCSs provides better 

conductivity and shorter pathways for ion transferring in its 

pores, resulting in fast charge/ion transfer kinetics [18]. It has 

been demonstrated that unique nanosheet structure favors a 

fast ion diffusion and charge transfer rate, which lead to an 

effective utilization of porosity and ideal capacitive 

performance [19].  

PCSs were initially synthesized by chemical vapor 

deposition that relies on a metallic substructure and the yield 

of this method is very limited [20-22]. Unambiguously, carbon 

nanosheets obtained by carbonization of various carbonaceous 

precursors at fairly good yields would be much suitable for 

large scale production and practical applications in the future. 

Thus, this review focuses on the typical syntheses of PCSs and 

their applications for supercapacitors, including (i) reduction 

of graphene oxide to graphene nanosheet; (ii) graphene 

directed synthesis; (iii) hard templating method; (iv) molten 

salt route; (v) direct carbonization of carbonaceous precursors 

and others. To keep the review down to a manageable level, 

the porous sheets fabricated from assembly of fibers/tubes [23] 

or graphene films/membrane [24], or vacuum filtration method 

are not considered in this review. 

 

2. Graphene-based nanosheets 

 

Graphene, a 2D carbon nanosheet composed of sp
2
 

bonded single-layer carbon atoms, has recently gained 

significant interest in major areas of scientific research. Due to 

its special structure, graphene nanosheet possesses unique 

properties, such as strong mechanical strength (∼1 TPa), 

extraordinarily high electrical and thermal conductivity, and 

large specific surface area (SSA) (2675 m
2
 g

-1
) [25-27]. 

Consequently, utilizing supercapacitor electrode materials 

based on graphene nanosheets have attracted great attentions 

due to the beneficial combination of the excellent mechanical, 

electrical properties as well as large surface area [28, 29].  

The most promising approach for the large-scale 

production of graphene is the chemical oxidation of graphite, 

conversion of the resulting graphite oxide to graphene oxide 
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The carbons are highly interconnected and partially graphitic, 

yielding excellent electrically conductive electrode. The 

macroporous voids with diameters of 1–2 μm serve as ion 

buffering reservoirs. The low thickness of the carbon 

nanosheets (10–30 nm) ensures nanoscale distances (5–15 nm) 

for ion diffusion (Figure 12b-e). The high total content of 

mesopores facilitates the accessibility of the electrolyte ions to 

the electrode surface and allows for fast ion transport. 

 

8. Conclusions 

 

To summarize up, various kinds of carbon sheets have 

been so far synthesized using the methods, such as wet-

chemistry synthesis, hard templating method, molten salt route 

and direct carbonization of precursors, etc. This provides a 

material platform for fundamentally understanding the 

physical and chemical properties of porous carbon nanosheets 

at molecular level. This novel sheeting-like structure reduces 

the path length of reactant inside reaction medium and 

enhances mass/ion transfer rate in carbon pores. The carbon 

nanosheets have demonstrated their grand capability in the 

application of electrode materials for supercapacitors. 

Although porous carbon nanosheets with short diffusion paths 

and enhanced electrical conductivity have achieved great 

improvement to the performance of current supercapacitors, 

considering the ever-increasing demands for electrical energy 

storage, adsorption and separation, researchers will continue to 

develop simple and efficient techniques to create well-defined 

porous carbon sheets with controlled porosity and fine 

structure, thus to improve the performance in according 

applications. With current research interests in graphene and 

graphene-derived nanomaterials, we therefore believe that the 

development of carbon sheets with new nanostructure and 

composition and investigation of their properties are still on-

going hot research topics. 
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Figure 12. (a) Schematic of the synthesis process for the hemp-derived carbon nanosheets, with the three different structural layers S1, S2, 

S3. (b) SEM micrograph highlighting the interconnected 2D structure of sample CNS-800. (c) TEM micrograph highlighting the structure 

of CNS-800. (d) High resolution TEM micrograph highlighting the porous, partially ordered structure of CNS-800. (e) ADF TEM 

micrograph, EELS thickness profile (inset) of CNS-800. Reprinted with permission from Ref. [86]. Copyright 2013, American Chemical 

Society. 
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