首页  课题组概况  研究方向  研究成果  成员介绍  实验设备  组内活动  合作交流  联系我们 
新闻动态

祝贺许浩楠等同学的文章被Chemistry...
祝贺朱敏熠等同学的文章被Chem. Com...
祝贺王浩维等同学的文章被Chemical ...
祝贺张瑞平等同学的文章被Angew. Ch...
祝贺刘占凯等同学的文章被ACS Catal...
祝贺武玉泰等同学的文章被Angewandt...
祝贺张雪洁等同学的文章被Nano Rese...

首页
您的位置: 首页>>正文

祝贺李成龙等同学的文章被Catalysis Science & Technology.接受发表!

2025年02月18日 10:48  点击:[]

Monolithic wood-based carbon supported Pd nanoparticles with tunable exposure for boosting semi-hydrogenation of alkynols

Abstract         

    The selective hydrogenation of alkynols to enols catalyzed by carbon-supported Pd catalysts is a highly attractive reaction for the production of fine chemicals. However, the limited dispersion and stability of Pd species on the carbon support often hindered their catalytic activity. In this study, we developed acarbon-layer anchored” method to synthesize Pd@NMC monolithic catalysts with tunable Pd exposure by the coating of nitrogen-containing polymer on the wood framework, followed by Pd loading, and carbonization procedures. The exposure of Pd nanoparticles can be controlled through a partial oxidation strategy. As a result, the semi-embedded Pd catalyst (Pd@NMC-250) exhibited superior activity and selectivity (91%) in the semi-hydrogenation of 2-methyl-3-butyn-2-ol (MBY). The reaction rate can reach 5110 mol molcat-1 h-1, which is 4.5-fold higher than that of the commercial Lindlar catalyst under identical conditions (308 K, 5 bar H2). Moreover, the monolithic catalyst presented good stability for enduring five cycles. The nitrogen species in the support and the carbon layer deposited on Pd nanoparticles during pyrolysis synergistically promote the Pd anchoring. After mild oxidation, the carbon layer is partially removed to form a semi-embedded Pd@C nanostructure, with the surface exposed and the bottom embedded on the carbon support, which enhances the stability. Furthermore, the monolithic wood-based carbon catalysts are easy to separate from the solution and thus have the potential for operating a variety of liquid-phase catalytic reactions beyond hydrogenation.


上一条: 祝贺张雪洁等同学的文章被Nano Research.接受发表! 下一条: 祝贺吕家贺等同学的文章被Journal of Power Sources.接受发表!

关闭

先进能源材料与催化团队 版权所有

本站部分内容来源于网络,版权归原作者或来源机构所有,如果涉及任何版权方面的问题请及时和我们联系,我们将尽快妥善处理!

推荐使用 Internet Explorer 浏览器浏览本站