首页  课题组概况  研究方向  研究成果  成员介绍  实验设备  组内活动  合作交流  联系我们 
新闻动态

祝贺谢亚东等同学的文章被Microporo...
祝贺王嘉等同学的文章被ACS Sustain...
祝贺杨欢等同学的文章被ChemCatChem...
祝贺樊杰等同学的文章被ACS Catal....
祝贺胡旭等同学的文章被Chemical En...
祝贺朱志杰等同学的文章被无机材料...
祝贺张雪洁等同学的文章被Separatio...

首页
您的位置: 首页>>正文

祝贺谢亚东等同学的文章被Microporous and Mesoporous Materials.接受发表!

2024年12月16日 11:49  点击:[]

Synthesis of mesoporous alumina through a three-compartment electrodialysis method

Abstract                 

       Alumina has attracted considerable interest due to its catalytic and adsorptive properties. Although sodium aluminate hydrolysis is the traditional method of synthesizing alumina, its production often contains impurities that limit its application. Herein, we propose a novel and environmentally friendly approach for synthesizing mesoporous alumina using a three-compartment electrodialysis system with sodium aluminate as the precursor. By employing selectively permeable anionic membranes, we successfully synthesized mesoporous alumina with a purity of 99.9%. The experimental results elucidated that aluminate ion transport kinetics were markedly accelerated under the synergistic effects of elevated feed concentration, decreased Ph, and heightened applied voltage, a phenomenon predominantly governed by the consequent reduction in membrane resistance. The resultant mesoporous alumina exhibited a pore size of 30 nm and a pore volume of 1.80 cm3 g-1. This work introduces an innovative method for mesoporous alumina synthesis via a three-compartment electrodialysis system, paving the way for novel applications in various engineering fields.






下一条: 祝贺王嘉等同学的文章被ACS Sustainable Chemistry & Engineering.接受发表!

关闭

先进能源材料与催化团队 版权所有

本站部分内容来源于网络,版权归原作者或来源机构所有,如果涉及任何版权方面的问题请及时和我们联系,我们将尽快妥善处理!

推荐使用 Internet Explorer 浏览器浏览本站